

Should I Stay or Should I Go?

Breathing Modulates the Attentional Exploitation/Exploration Balance

Dominik Grätz, Melissa E Moss, Ulrich Mayr

University of Oregon

Introduction

Research has recently demonstrated effects of breathing on

- perception (e.g., Grund et al., 2022; Kluger et al., 2021)
- memory (e.g., Huijbers et al., 2014)
- cognitive tasks (e.g., Perl et al., 2019)
 (For a review see Heck et al., 2022)

However, effects of breathing on the attentional exploitation and exploration balance (seeking information in a narrow vs. wide space, respectively), have not been investigated.

Experiment 1: Rational Cue Checking Paradigm

- In each trial, four patches of moving dots appeared on the screen. Dots in one of the patches moved coherently.
- Either Location task (localize patch with coherent motion) or Direction task (identify direction of coherent motion) determined the correct (rewarded) response.
- The valid task could switch from trial to trial with a known probability (sp = 0.05 or sp = 0.15).
- Participants could choose to check task cues (exploration) to confirm the currently active task rule.
- Respiration and cue checking were measured using a chest belt and eve tracker, respectively.

Results

- N = 33
- Wavelet convolution was applied to the respiration data, to derive phase angle (location in breathing cycle).
- Sinusoidal mixed effects models were used to predict cue checking probability from respiratory phase, placeholder condition, and switch probability condition.
- Respiratory phase was predictive of cue checking: Including breathing effects yielded a significant increase in model fit (χ²(2) = 11.05, p < 0.01).

Experiment 2: Waldo Visual Search Paradigm

exploitation exploration

- Subjects searched for Waldo and Wenda in 25 paneled Where's Waldo? images.
 - Exploration was identified as transitions between panels.
- Individuals could choose their own search path.
- Respiration and transitions were measured using a chest belt and eye tracker, respectively.

Preliminary Results

- Data collection is ongoing (N = 27 / 40)
- Mixed effects models will be used to predict panel transition probability from respiratory phase in each image search.

Conclusions

- In Experiment 1, we found evidence that an individual's decision to shift attention to explore the environment is influenced by the breathing cycle.
- A similar, yet weaker, relationship appears in Experiment 2, but data collection is not complete.
- This work supports the notion that slow-paced physiological rhythms may shape behavior and how we direct attention.
- Future research should investigate underlying neural mechanisms and the degree to which this relationship between respiration and exploration may be actively used for efficient information gathering.

